Publicações - ciências exatas e da terra


Otacilio Lopes de Souza da Paz; Sidney Vincent de Paul Vikou; Daiane Maria Pilatti; Marianne de Oliveira; Eduardo Vedor de Paula
SOCIEDADE & NATUREZA (UFU. ONLINE), v. 33, p. e59586 2021 DOI
Palavra-chave: manguezais; sensoriamento remoto; Drone (ARP)
Áreas do conhecimento: Ciências Exatas e da Terra; Planejamento e Gestão Ambiental; Ciências Exatas e da Terra; Geociências; Geografia Física; Geocartografia
resumo ...
(en) Although mangroves are ecologically important coastal ecosystems and laws are in place to ensure their protection, anthropogenic activities continue to cause the degradation and/or suppression of mangrove vegetation. Traditional methods to measure and monitor this process, including the use of medium spatial resolution orbital images, are unsuitable for fine-scale environmental degradation and recovery analyses, including the measurement of degraded areas in and around mangroves. Thus, this study aims to analyze the effectiveness of using images from remotely piloted aircraft (RPA) in the mapping of exposed soil areas in mangroves. Imaging with RPA was performed in 22 urban mangroves in Paranaguá, Paraná State, Brazil. Orthomosaics were generated from the collected data and submitted to supervised classification. We then calculated global accuracy and Kappa indices and commission and omission errors. Based on data from the RPA images, the identification of areas of exposed soil on the margins and interior of mangroves was effective since the global accuracy index was higher than 96% for all classified orthomosaics and the Kappa index was above 0.95, indicating excellent classification. The mapping shows different concentrations of exposed soil areas in the analyzed mangroves, enabling us to identify three regional patterns of vegetation degradation. The results can inform municipal planning, including revisions to the Integrated Development Master Plan, Basic Sanitation Plan, and Land Regularization Plan. This information may also be used in studies on the recovery and monitoring of mangrove vegetation.
(pt) Manguezais são ecossistemas costeiros de grande relevância ecológica. Mesmo com legislações que assegurem sua proteção, diversas atividades antrópicas resultam em degradação e/ou supressão da sua vegetação. Para mensurar e monitorar tal processo, metodologias clássicas são aplicadas utilizando imagens orbitais de média resolução espacial, sendo que os resultados obtidos não são adequados para estudos de degradação e recuperação ambiental em escala de detalhe, como a mensuração de áreas de solo exposto no interior e entorno dos manguezais. O presente estudo tem por objetivo analisar a eficiência de imageamento por aeronaves remotamente pilotadas (RPA) no mapeamento de áreas de solo exposto em manguezais. Foram realizados imageamento com RPA em 22 manguezais urbanos de Paranaguá/Paraná - litoral sul do Brasil. Ortomosaicos foram gerados a partir dos dados coletados e estes foram submetidos à classificação supervisionada. Em seguida, calcularam-se índices de exatidão global, índice Kappa e erros de comissão e omissão. A identificação de áreas de solo exposto nas franjas e no interior dos bosques de manguezal, a partir de dados coletados por RPA, se mostrou eficiente visto que o índice de exatidão global foi superior a 96% em todos os ortomosaicos classificados. O índice Kappa esteve acima de 0,95 em todos os ortomosaicos, indicando uma classificação excelente. Os mapeamentos mostram contraste entre a concentração de áreas de solo exposto nos manguezais analisados, permitindo uma regionalização do padrão de degradação da vegetação em três grupos. Os resultados podem auxiliar documentos de planejamento municipal como a revisão do Plano Diretor de Desenvolvimento Integrado, Plano de Saneamento Básico e o Plano de Regularização Fundiária. Estas informações também poderão dar subsídios para estudos de recuperação da vegetação dos manguezais e fiscalização.
Brendo Benato Rutyna; Carlos Roberto Soares; Carlos Augusto Wroblewski; Eduardo Vedor de Paula
REVISTA BRASILEIRA DE GEOGRAFIA FÍSICA, v. 14, n. 2, p. 676 2021 DOI
Palavra-chave: Assoreamento; Dragagens Portuárias; produção de sedimentos; Análise e Gestão Ambiental
Áreas do conhecimento: Ciências Exatas e da Terra; Planejamento e Gestão Ambiental
resumo ...
(pt) A segurança à navegação é um fator primordial para garantir aos navios acesso aos portos. Obras de dragagens são necessárias para a manutenção dos canais de navegação diante do processo de assoreamento em regiões estuarinas. Entretanto, o volume, em metros cúbicos dragados, na região portuária do Complexo Estuarino de Paranaguá (CEP), aumentou ao longo do tempo. O presente estudo se restringe aos setores que interessam à navegação e às instalações portuárias, isto é, o eixo E-W do CEP, que abrange os trechos do canal de acesso aos portos paranaenses nas baías de Paranaguá e Antonina. O total de sedimentos realocados entre 1999 e 2018 nos trechos do canal foi da ordem de 42.517.662,79 m³. A manutenção destes setores é extremamente onerosa, uma vez que mais de 4.000.000 m³.a -1 de material sedimentar são retirados atualmente para garantir acessibilidade aos navios. Ao estimar a produção de sedimentos na área de drenagem do CEP, obteve-se o valor anual de 197.017,23 ton. Dessa forma, torna-se necessário desenvolver estratégias para a retenção de sedimentos nas áreas fonte, a fim de garantir a prosperidade das atividades portuárias nos próximos anos. Recomendações à expansão dos portos na região foram apresentadas ao final.     Silting in the Bays of Antonina and Paranaguá - PR: Integrated Analysis of Sedimentation Sources and Dragging Works A B S T R A C T Safety in navigation is a primordial aspect to the ports. Dredging works are necessary for the maintenance of the navigation channels before the process of silting in estuarine regions. However, the volume in cubic meters dredged in the port region of the Paranaguá Estuary Complex (CEP) has increased over time. This study is restricted to sectors that are of interest to navigation and to port installation, in other words, the E-W axis of the CEP that includes the sections of the access channel to the ports of Paraná in the bays of Paranaguá and Antonina. The total of relocated sediments between 1999 and 2018 in the canal segments is of the order of 42.517.662,79 m³. The maintenance of these sectors becomes extremely costly, since more than 4.000.000 m³.a -1 of sedimentary material is removed to guarantee accessibility to the ships. When estimating the sediment production in the CEP drainage area, the annual value of 197,017.23 tons is obtained. Thus, it becomes necessary to develop strategies for retaining sediments in the source areas, in order to guarantee the prosperity of port activities in the coming years. Recommendations for expanding ports in the region were presented at the end. Keywords: Hydrographic Units. Sedimentary Dynamics. Sedimentary Disposal. Port Environmental Management.
BIFFI, LEONARDO JOSOÉ; Jorge S Centeno; SCHIMALSKI, MARCOS BENEDITO; RUFATO, LEO; NETO, SÍLVIO LUÍS RAFAELI; MARCATO JUNIOR, JOSÉ; GONÇALVES, WESLEY NUNES; Edson A Mitishita; LIESENBERG, VERALDO; SANTOS, ANDERSON APARECIDO DOS; GONÇALVES, DIOGO NUNES; ESTRABIS, NAYARA VASCONCELOS; SILVA, JONATHAN DE ANDRADE; OSCO, LUCAS PRADO; RAMOS, ANA PAULA MARQUES
Remote Sensing, v. 13, n. 1, p. 54 2021 DOI
Palavra-chave: convolutional neural network; object detection; precision agriculture
Áreas do conhecimento: Ciências Exatas e da Terra; Geodésia; Sensoriamento Remoto; Ciências Exatas e da Terra; Geociências; Geodésia; Fotogrametria
resumo ...
In recent years, many agriculture-related problems have been evaluated with the integration of artificial intelligence techniques and remote sensing systems. Specifically, in fruit detection problems, several recent works were developed using Deep Learning (DL) methods applied in images acquired in different acquisition levels. However, the increasing use of anti-hail plastic net cover in commercial orchards highlights the importance of terrestrial remote sensing systems. Apples are one of the most highly-challenging fruits to be detected in images, mainly because of the target occlusion problem occurrence. Additionally, the introduction of high-density apple tree orchards makes the identification of single fruits a real challenge. To support farmers to detect apple fruits efficiently, this paper presents an approach based on the Adaptive Training Sample Selection (ATSS) deep learning method applied to close-range and low-cost terrestrial RGB images. The correct identification supports apple production forecasting and gives local producers a better idea of forthcoming management practices. The main advantage of the ATSS method is that only the center point of the objects is labeled, which is much more practicable and realistic than bounding-box annotations in heavily dense fruit orchards. Additionally, we evaluated other object detection methods such as RetinaNet, Libra Regions with Convolutional Neural Network (R-CNN), Cascade R-CNN, Faster R-CNN, Feature Selective Anchor-Free (FSAF), and High-Resolution Network (HRNet). The study area is a highly-dense apple orchard consisting of Fuji Suprema apple fruits (Malus domestica Borkh) located in a smallholder farm in the state of Santa Catarina (southern Brazil). A total of 398 terrestrial images were taken nearly perpendicularly in front of the trees by a professional camera, assuring both a good vertical coverage of the apple trees in terms of heights and overlapping between picture frames. After, the high-resolution RGB images were divided into several patches for helping the detection of small and/or occluded apples. A total of 3119, 840, and 2010 patches were used for training, validation, and testing, respectively. Moreover, the proposed method’s generalization capability was assessed by applying simulated image corruptions to the test set images with different severity levels, including noise, blurs, weather, and digital processing. Experiments were also conducted by varying the bounding box size (80, 100, 120, 140, 160, and 180 pixels) in the image original for the proposed approach. Our results showed that the ATSS-based method slightly outperformed all other deep learning methods, between 2.4% and 0.3%. Also, we verified that the best result was obtained with a bounding box size of 160 × 160 pixels. The proposed method was robust regarding most of the corruption, except for snow, frost, and fog weather conditions. Finally, a benchmark of the reported dataset is also generated and publicly available.
Lígia Padilha Novak; Marcelo Renato Lamour
REVISTA BRASILEIRA DE GEOMORFOLOGIA, v. 22, p. 163-185, 2021 DOI
Palavra-chave: Geomorfologia costeira; Granulometria; Linha de costa
Áreas do conhecimento: Ciências Exatas e da Terra; Oceanografia; Oceanografia Geológica; Sedimentologia Marinha
resumo ...
VAZ, ANA PAULA DE MELO E SILVA; RAMOS, SANDRA MARTINS; Sandro Froehner
ENGENHARIA SANITÁRIA E AMBIENTAL (ONLINE), v. 26, n. 1, p. 77-87, 2021 DOI
Palavra-chave: aqüífero; Controle Ambiental
Áreas do conhecimento: Engenharias; Engenharia Sanitária; Saneamento Ambiental; Qualidade do Ar, das Águas e do Solo; Ciências Exatas e da Terra; Geociências; Geoquímica Orgânica
resumo ...
RESUMO Conhecer o comportamento geomorfológico de bacias hidrográficas é fundamental para a...
Jéssica Barbosa Ferreira; Wanderley Marchi Júnior
JOURNAL OF PHYSICAL EDUCATION (ONLINE), v. 32, n. 1, p. e3267 2021 DOI
Palavra-chave: e-sports; profissionalização do esporte; LOL
Áreas do conhecimento: Ciências Exatas e da Terra; Geociências; Educação Física; Ciências Exatas e da Terra; Geociências; Sociologia do Esporte
resumo ...
(en) With the development of electronic games in recent years, the game League of Legends stood out for its championship structure and number of players and spectators. It was noticed that, since its release, in 2009, the game went through a process of professionalization, with some players being considered as professionals. Therefore, the aim of this paper was to understand how the professionalization of the game League of Legends has been treated in published papers about the theme. The methodology used was exploratory descriptive, in which, through the reading of titles, abstract and articles, it was selected twenty articles for a literature review. Thus, it was found that the professionalization of League of Legends is linked to two factors: the launch of the League Championship Series (LCS) and its other leagues scattered in other regions, allowing players to earn wages, and the specialization of players in specific positions within the game.
(pt) Com o desenvolvimento dos jogos eletrônicos nos últimos anos, o jogo League of Legends passou a se destacar com sua estrutura de campeonato e número de jogadores e espectadores. Percebeu-se que, desde o ano de seu lançamento, em 2009, houve uma profissionalização do jogo, com alguns jogadores sendo considerados profissionais. Pensando nisso, o objetivo deste trabalho foi analisar como a profissionalização do League of Legends no contexto dos esportes eletrônicos tem sido tratada em referenciais das áreas que abordam a temática. A metodologia utilizada foi a exploratória descritiva, em que, através de leitura de títulos, resumos e artigos propriamente ditos, selecionou-se vinte artigos para uma revisão de literatura. Concluiu-se, assim, que a profissionalização do jogo League of Legends se deu por conta de dois agentes: a criação das ligas oficiais da Riot Games, chamada de League of Legends Championship Series (LCS), e a especialização dos jogadores em posições específicas.
COSTA, JESSICA DA SILVA; LIESENBERG, VERALDO; SCHIMALSKI, MARCOS BENEDITO; SOUSA, RAQUEL VALÉRIO DE; BIFFI, LEONARDO JOSOÉ; GOMES, ALESSANDRA RODRIGUES; NETO, SÍLVIO LUÍS RAFAELI; Edson A Mitishita; BISPO, POLYANNA DA CONCEIÇÃO
Remote Sensing, v. 13, n. 2, p. 229 2021 DOI
Palavra-chave: SAR mapping; data fusion; polarimetric attributes; supervised classification
Áreas do conhecimento: Ciências Exatas e da Terra; Geodésia; Sensoriamento Remoto
resumo ...
The Santa Catarina Southern Plateau is located in Southern Brazil and is a region that has gained considerable attention due to the rapid conversion of the typical landscape of natural grasslands and wetlands into agriculture, reforestation, pasture, and more recently, wind farms. This study’s main goal was to characterize the polarimetric attributes of the experimental quad-polarization acquisition mode of the Advanced Land Observing Satellite/Phased Array type L-band Synthetic Aperture Radar (ALOS/PALSAR-2) for mapping seven land cover classes. The polarimetric attributes were evaluated alone and combined with SENTINEL-2A using a supervised classification method based on the Support Vector Machine (SVM) algorithm. The results showed that the intensity backscattering alone reached an overall classification accuracy of 37.48% and a Kappa index of 0.26. Interestingly, the addition of polarimetric features increased to 71.35% and 0.66, respectively. It shows that the use of polarimetric decomposition features was relatively efficient in discriminating land cover classes. SENTINEL-2A data alone performed better and achieved a weighted overall accuracy and Kappa index of 85.56% and 0.82. This increase was also significant for the Z-test. However, the addition of ALOS/PALSAR-2 derived features to SENTINEL-2A slightly improved accuracy and was marginally significant at a 95% confidence level only when all features were considered. Possible implications for that performance are the accumulated precipitation prior to SAR data acquisition, which coincides with the rainy season period. The experimental quad-polarization mode of ALOS/PALSAR- 2 shall be evaluated in the near future over different seasonal conditions to confirm results. Alternatively, further studies are then suggested by focusing on additional features derived from SAR data such as texture and interferometric coherence to increase classification accuracy. These measures would be an interesting data source for monitoring specific land cover classes such as the threatened grasslands and wetlands during periods of frequent cloud coverage. Future investigations could also address multitemporal approaches employing either single or multifrequency SAR.
BOARETTO, B. R. R.; BUDZINSKI, R. C.; ROSSI, K. L.; César Manchein; PRADO, T. L.; FEUDEL, U.; LOPES, S. R.
PHYSICAL REVIEW E, v. 104, n. 2, p. 024204 2021 DOI
Palavra-chave: Permutation entropy; Machine learning
Áreas do conhecimento: Ciências Exatas e da Terra; Ciência da Computação; Metodologia e Técnicas da Computação; Engenharia de Software; Ciências Exatas e da Terra; Física; DINâMICA NãO LINEAR
resumo ...
We investigate the role of bistability in the synchronization of a network of identical bursting neurons coupled through an generic electrical mean-field scheme. These neurons can exhibit distinct multistable states and, in particular, bistable behavior is observed when their sodium conductance is varied. With this, we consider three different initialization compositions: (i) the whole network is in the same periodic state; (ii) half of the network periodic, half chaotic; (iii) half periodic, and half in a different periodic state. We show that (i) and (ii) reach phase synchronization (PS) for all coupling strengths, while for (iii) small coupling regimes do not induce PS, and instead, there is a coexistence of different frequencies. For stronger coupling, case (iii) synchronizes, but after (i) and (ii). Since PS requires all neurons being in the same state (same frequencies), these different behaviors are governed by transitions between the states. We find that, during these transitions, (ii) and (iii) have transient chimera states and that (iii) has breathing chimeras. By studying the stability of each state, we explain the observed transitions. Therefore, bistability of neurons can play a major role in the synchronization of generic networks, with the simple initialization of the system being capable of drastically changing its asymptotic space.
Lais Pastre Dill; DEBORA MEREDIANE KOCHEPKA; Larissa Lavorato Lima; ALEXANDRE AMARAL LEITÃO; WYPYCH, FERNANDO; Claudiney Soares Cordeiro
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, n. 1, p. 145-157, 2021 DOI
Palavra-chave: clay minerals; Acidic leaching; esterification
Áreas do conhecimento: Ciências Exatas e da Terra; Físico-Química; Cinética Química e Catálise; Ciências Exatas e da Terra; Química; Engenharia e Ciencia de Materiais; Materiais de Baixa Dimensionalidade Estrutural
resumo ...
DILL, LAÍS; KOCHEPKA, DÉBORA; LIMA, LARISSA; LEITÃO, ALEXANDRE; WYPYCH, FERNANDO; Claudiney Soares Cordeiro
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, v. 1, p. 1-13, 2021 DOI
Palavra-chave: Montmorillonite; surface acidity; Catalysis; Methanolysis
Áreas do conhecimento: Ciências Exatas e da Terra; Química Orgânica; Síntese Orgânica; Ciências Exatas e da Terra; Química; Química Inorgânica; Físico Química Inorgânica
resumo ...
Total de registros: