Publicações - ciências exatas e da terra


DOS SANTOS NETA, PALMIRA; FÁVARO, CARLA; MACEDO, SARAH; MOURA, JOSÉ INÁCIO; BELLO, JAN; SANTOS, RÂNDILLA; Paulo Henrique Gorgatti Zarbin
JOURNAL OF THE BRAZILIAN CHEMICAL SOCIETY, v. 32, p. n/a 2021 DOI
Palavra-chave: Pheromone; ecologia química
Áreas do conhecimento: Ciências Exatas e da Terra; Química; Química Orgânica; Química dos Produtos Naturais; Ciências Exatas e da Terra; Química; Química Orgânica; Evolução, Sistemática e Ecologia Química
resumo ...
Ernesto Birgin; Jose Mario Martinez; Jose Alberto Ramos Flor
NUMERICAL ALGORITHMS, v. 86, p. 1165-1188, 2021 DOI
Palavra-chave: Algoritmos; complexity
Áreas do conhecimento: Ciências Exatas e da Terra; Otimização
resumo ...
In many engineering applications, it is necessary to minimize smooth functions plus penalty (or regularization) terms that violate smoothness and convexity. Specific algorithms for this type of problems are available in recent literature. Here, a smooth reformulation is analyzed and equivalence with the original problem is proved both from the points of view of global and local optimization. Moreover, for the cases in which the objective function is much more expensive than the constraints, model-intensive algorithms, accompanied by their convergence and complexity theories, are introduced. Finally, numerical experiments are presented.
Gabriel Haeser; Jose Alberto Ramos Flor
OPERATIONS RESEARCH LETTERS, v. 49, p. 883-889, 2021 DOI
Palavra-chave: Constraint Qualifications
Áreas do conhecimento: Ciências Exatas e da Terra; Otimização
resumo ...
Ademir Alves Ribeiro; Ariel Rogelio Velazco Cardenas; José Alberto Ramos; Leonardo Delarmelina Secchin; Roberto Andreani
IMA JOURNAL OF NUMERICAL ANALYSIS, v. x, p. 1 2021 DOI
Palavra-chave: nonlinear programming; Augmented Lagrangian Methods; approximate KKT conditions
Áreas do conhecimento: Ciências Exatas e da Terra; Matemática Aplicada; Otimização
resumo ...
Abstract. Augmented Lagrangian (AL) algorithms are very popular and successful methods for solving constrained optimization problems. Recently, global conv
FRITSCHE, GIAN; Aurora Trinidad Ramirez Pozo
EXPERT SYSTEMS WITH APPLICATIONS, v. 1, n. 1, p. 116343-50, 2021 DOI
Palavra-chave: algoritmos evolutivos; hiper-heuristica
Áreas do conhecimento: Ciências Exatas e da Terra; Ciência da Computação; Metodologia e Técnicas da Computação; Engenharia de Software; Ciências Exatas e da Terra; Ciência da Computação; Metodologia e Técnicas da Computação; Inteligencia Artificial
resumo ...
ALENCAR, JORGE; Leonardo Silva de Lima
PROYECCIONES JOURNAL OF MATHEMATICS, v. 40, n. 6, p. 1587-1602, 2021 DOI Home page
Palavra-chave: Domination polynomial; generating function; digraph
Áreas do conhecimento: Ciências Exatas e da Terra; Matemática Aplicada
resumo ...
(en) Let $G$ be a directed graph on $n$ vertices. The domination polynomial of $G$ is the polynomial $D(G, x) = \sum^n_{i=0} d(G, i)x^i$, where $d(G, i)$ is the number of dominating sets of $G$ with $i$ vertices. In this paper, we prove that the domination polynomial of $G$ can be obtained by using an ordinary generating function, which can be extended to undirected graphs. Besides, we show that our method is useful to obtain the minimum-weighted dominating set of a graph.
Evelin Heringer Manoel Krulikovski; Ademir Alves Ribeiro; Mael Sachine
APPLIED MATHEMATICS AND OPTIMIZATION, v. 84, p. 3451-3473, 2021 DOI
Palavra-chave: Mathematical programs with cardinality constraints; Weak stationarity; Constraint qualification
Áreas do conhecimento: Ciências Exatas e da Terra; Matemática Aplicada; Otimização
resumo ...
In this paper, we study a class of optimization problems, called Mathematical Programs with Cardinality Constraints (MPCaC). This kind of problem is generally difficult to deal with, because it involves a constraint that is not continuous neither convex, but provides sparse solutions. Thereby we reformulate MPCaC in a suitable way, by modeling it as mixed-integer problem and then addressing its continuous counterpart, which will be referred to as relaxed problem. We investigate the relaxed problem by analyzing the classical constraints in two cases: linear and nonlinear. In the linear case, we propose a general approach and present a discussion of the Guignard and Abadie constraint qualifications, proving in this case that every minimizer of the relaxed problem satisfies the Karush–Kuhn–Tucker (KKT) conditions. On the other hand, in the nonlinear case, we show that some standard constraint qualifications may be violated. Therefore, we cannot assert about KKT points. Motivated to find a minimizer for the MPCaC problem, we define new and weaker stationarity conditions, by proposing a unified approach.
OSORIO, L. A.; Roberto, M; CALDAS, I; VIANA, R. L.; Yves Elskens
PHYSICS OF PLASMAS, v. 28, n. 8, p. 082305 2021 DOI
Palavra-chave: barreiras de transporte
Áreas do conhecimento: Ciências Exatas e da Terra; Física dos Fluídos, Física de Plasmas e Descargas Elétricas; Física de Plasmas e Descargas Elétricas
resumo ...
Barriers have been identified in magnetically confined plasmas by reducing the particle transport and improving the confinement. One of them, the primary shearl
RADOMSKI, FERNANDO APARECIDO DIAS; Eduardo Lemos de Sá; RIBEIRO, EVALDO; DUARTE, CELSO DE ARAUJO DE ARAUJO
APPLIED SPECTROSCOPY, v. 00, p. 000370282198969 2021 DOI
Palavra-chave: essential oil; electronic spectroscopy; natural products
resumo ...
Essential oils are complex mixtures of organic substances with large commercial importance in the pharmaceutical, food, fragrance, and cosmetic industries due to their organoleptic and biological p...
Jurandir Ceccon; DURÁN, CARLOS; Marcos Montenegro
JOURNAL OF GEOMETRIC ANALYSIS, v. 31, n. 1, p. 913-952, 2021 DOI
Palavra-chave: best constant; desigualdade de Nash
Áreas do conhecimento: Ciências Exatas e da Terra; Análise; Análise Geométrica
resumo ...
Let M be a smooth compact manifold of dimension $$n \ge 1$$ without boundary endowed with a volume form $$\omega $$ and a fibrewise norm $$\mathcal {N}:T^*M \rightarrow \mathbb {R}$$ . For any $$p > q \ge 1$$ and corresponding interpolation parameter $$\theta $$ , we prove that the optimal normed Nash inequality holds for any smooth function u on M, $$\begin{aligned} \left( \int _M |u|^p\; \omega \right) ^{1/p \theta }\le & {} \left( N_{\mathrm{{opt}}} \left( \int _M \mathcal {N}^p(\mathrm{{d}}u)\; \omega \right) ^{1/p} \right. \\&+ \left. B\left( \int _M |u|^p\; \omega \right) ^{1/p} \right) \left( \int _M |u|^q\; \omega \right) ^{(1 - \theta )/\theta q} \end{aligned}$$ for some constant B, where $$N_{\mathrm{{opt}}}$$ is the best possible constant. Its importance can be viewed from two perspectives. Firstly, this inequality is a powerful tool in the study of normed entropy and isoperimetrical inequalities on manifolds which have been established in the flat context by Gentil (J Funct Anal 202:591–599, 2003) and Cordero-Erausquin, Nazaret and Villani (Adv Math 182:307–332, 2004), , respectively. Secondly, this work introduces an appropriate framework to study Sobolev type inequalities on manifolds endowed with a very general way of measuring the involved quantities, instead of using the restricted Riemannian context.
Total de registros: